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a case will be defined as partial enhancement. The re- 
flections displaying the higher symmetry are distributed 
in the pattern after a certain symmetry and are usually 
those in which one or more than one index is a mul- 
tiple of an integer. Foi: example, in the case of triclinic 
wollastonite, the hkl reflection, when k is even (a mul- 
tiple of 2), is equal in intensity to, and located sym- 
metrical against the hOl plane with, the (h+k)/2,[c,l 
reflection (Ito, 1950). 

Introductory remarks on partial enhancement have 
been published (Sadanaga, 1959, 1963) and the detailed 
theory will be treated shortly elsewhere. 
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A Simple Theory of the Off-Centre Displacement of Cations in Oetahedral Environments 
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Off-centre displacement occurs when the effective size of a cation B is such that the unstressed B-O 
bond length is less than 1/I/2 times the oxygen 'diameter'. Assuming that all interatomic forces are 
central, there is then, for a symmetrically placed cation, a tension in the O-B-O diameters and a com- 
pression in the O-O edges of the octahedron. Elementary Born-theory treatment shows that for an 
isolated octahedron the tension will be relaxed by off-centre displacement of B. The relaxation will be 
shared with the O-O edges, which are therefore elongated. Relaxation can affect one, two, or three 
O-B-O diameters simultaneously, with different consequences for the edge lengths. The character and 
magnitude of the relaxation are independent of the symmetry and the structure, depending only on the 
B displacement. Predictions have been verified by experimental evidence from the structures and lattice 
parameters of KNbO3 and NaNbO3. Quantitatively, the off-centring must be strongly influenced by 
polarization (involving non-central forces), which is also the means whereby effects within octahedra are 
communicated to their neighbours. Qualitatively, however, when the displacements are fairly small 
(as is true for Nb) the present description in terms of bond stresses is useful and allows predictions to 
be made. A further paper on thermal expansion is planned. 

Interest in the off-centre displacements of 'cations' in 
octahedra has been stimulated by their important role 
in ferroelectrics of the perovskite type. That the cause 
of the displacement is not specific to ferroelectrics, but 
is more generally rooted in crystal chemistry, is now 
recognized. It has been discussed by Orgel (1958), who 
showed that it depended on the effective radius (not 
the conventional ionic radius) of the cation B relative 
to that of oxygen. The present note derives the same 
conclusion in a slightly different way, which allows 
predictions to be made about the character of the octa- 
hedral distortion in relation to the type and magnitude 
of the off-centre displacement. 

The Born theory, in its simplest form, assumes that 
the equilibrium distance between two atoms depends 
only on the potential energies of their mutual attractive 

and repulsive forces, and that the equilibrium distance 
is that for which the force on either atom is zero, i.e. 
the bond is unstressed. In crystal structures (as distinct 
from diatomic molecules) this cannot be lrue. Consider 
the octahedron as an isolated unit (a reasonable next 
approximation). There are repulsions in each of the 
O-O edges, and these produce tensions in each of the 
diametral O-B-O links (Fig. 1). Hence, even for a 
central B atom, the B-O bonds are elongated beyond 
their 'unstressed' length (a length which cannot be 
derived directly from measured interatomic distances, 
since all of these represent more or less stressed con- 
ditions, but which is a useful concept in discussion). 

The O-O repulsions are partly electrostatic, partly 
of covalent origin. The ionic part varies slowly with 
O-O distance, but is always relatively weak. The co- 
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valent part increases very rapidly with decreasing dis- 
tance o'ver a narrow range of O-O values. At the lower 
end of this range, differences of length are so small as 
to be negligible for our purposes, and we may take 
the length as the effective oxygen diameter, tr. (Since the 
repulsion potential associated with an oxygen atom is 
dependent to some extent on its other neighbours - 
its electron cloud not remaining spherical - this 'dia- 
meter' may vary blightly from one compound to another; 
but we are concerned only with changes within a single 
compound, so that any changes in the form of the 
potential will be negligible in their effect). Edge lengths 
shorter than the oxygen diameter will not occur; edge 
lengths which are considerably greater correspond to 
very weak repulsive forces. It is edge lengths close to 
the value of the oxygen diameter which are of particu- 
lar interest. 

Thus, if the unstressed B-O length b is greater than 
o'/i/2, repulsions in O-O and tensions in O-B-O are 
small. But if b is appreciably less than G/I/2, the O-O 
edge length is equal to a, and B-O is greater than b; 
hence large tensions are applied to O-B-O, which in 
turn cause large compressive stresses in O-O. If b is 
very much less than a/1/2, the octahedral configuration 
will be unstable and will not occur. We are concerned 
with the intermediate range where b is slightly less 
than a/1/2. 

Consider first the variation of force with distance in 
an individual bond. Assuming the anion fixed, let F 
be the force which must be applied to the cation to 
increase the bond length by Ar from its unstressed value 
r0. The Born potential between the atoms may be writ- 
ten 

u =  - A.fi(r) + Bf2(r)  

where J] and f2 are functions of r whose exact form 
we do not need to know, provided that 

(i) both fx and J~ decrease smoothly as r increases 
(ii) fz depends on higher powers of r (over the range 

which interests us) than does J ] .  

In the most familiar approximation, Jl and J~ are taken 
as r -m and r -n respectively, with n > m. We need make 
no assumption about the nature of the attractive force, 
whether it is ionic or partly covalent, except that it, 
like the repulsive force, is effectively central. This con- 
dition will need reconsideration below. 

We are concerned with the force F =  dU]dr, its slope 
dF[dr, and the rate of change of slope dZF]dr 2. In the 
interesting range of r, the terms in A and B must be 
of comparable magnitude. For F at the point r = r0 the 
terms are equal, and U0 is a minimum because n > m. 
At each differentiation both terms change sign, and 
the B term increases relative to the A term by a factor 
of order of magnitude n/m. Thus for small values of 
r each of the quantities F, dF/dr, and dZF/dr z, is of 
the same sign as its B term, - ,  + ,  - ,  respectively, and 
each changes sign at a successively greater value of r. 
For r>ro, F is positive, while dF/dr at first remains 
positive and dZF/dr z negative. This gives the shape of 

curve shown in Fig. 2. As r increases, a maximum M 
is reached at which the slope dF/dr changes sign, but 
dZF/dr z is still negative. Hence the shape of the maxi- 
mum is unsymmetrical and the negative slope at r =  
rM+rr  is less than the positive slope at r=rM--fir.  
This general result holds good even if Jq(r) and f2(r) 
are no1 simple inverse power functions. The detailed 
shape of the curve would then be different, but its 
qualitative features would be unchanged, and these are 
all that we shall need for our discussion. 

The curve in Fig. 2 represents the value of an external 
force F needed to maintain an extension Ar against 
the tension in the bond. The equilibrium at any par- 
ticular value of F is stable if changes in F produce dis- 
placements in the same direction, i.e. if dE/dr is positive. 

We now consider an atom R (Fig. 3) acted on by 
two like bonds, PR and QR, in the same straight line, 
the atoms P and Q being fixed so that P Q = d > 2 r 0 .  

Consider the two bonds separately. A force F1 acts 
on the atom R to produce an extension in the first 
bond, a force Fa to produce an extension in the second 
[Fig.3(b)]. Plotting each against r, from origins at r0 
and d - r 0  respectively, we have the results shown in 
Fig. 4(a) and (b) for two different values of d -2 r0 .  The 
net force acting on the atom is E l - F 2 ,  and for equi- 
librium this must be zero. Thus the possible positions 
of the atom are at the symmetrical position A in 
either case illustrated, or at the off-centre positions B 
or C in Fig. 4(b). 

Which of these positions is stable? The condition is 
that d(Fl-F2)/dr must be positive. Now in case (a), 

Fig. 1. Section of octahedron, with central B cation and oxygen 
atoms at corners. Arrows show directions of forces on 
atoms. 

M 

Ar 

Fig. 2. Variation of force with distance for a pair of atoms, 
calculated for U=-A/r2+B/r9;  origin is at r0, the equili- 
brium distance for an unstressed bond. 
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at A, dF1/dr is positive and dF2/dr is negative; hence 
equilibrium is stable. In case (b), at A, the signs are 
reversed; equilibrium is unstable. But at B, where both 
dF~/dr and dF2/dr are positive, the former is greater; 
and at C, where both are negative, the magnitude of 
the latter is greater. Hence equilibrium is stable at both 
B and C. 

It follows that the off-centring of the cation is a 
direct consequence of a Born-type interaction between 
cation and anion when the anion-anion repulsion has 

d < > 

P rl R r2 Q 
(a) 

F1 : ; > • 
P rl R Q 

• < ; z 
P F= R r= Q 

(b) 

Fig. 3. Forces acting on atom R in a line between two atoms 
rigidly fixed at P and Q. (a) Off-centre position of R, showing 
long and short bonds. (b) External forces acting on bonds 
PR and QR, considered separately. 

(a) 

F1 A F2 

(b) 

Fig.4. Variation of forces acting on atom R with bond length. 
Distances r are measured from atom P. The curves for Fl 
and/'2 are identical with each other and with that in Fig. 2, 
but that for F2 is drawn with rz=d-r], and the points D 
and E, corresponding to the origin in Fig.2, are those for 
which r = r0, r = d -  r0 respectively. 

caused the cation-anion distance to be sufficiently ex- 
tended beyond its unstressed value. 

This, of course, is not the whole story. We have 
taken f~ and ~ as corresponding to central forces, and 
have also assumed that the tensions applied to the B-O 
bonds as a result of other interatomic forces are inde- 
pendent of changes in the individual B-O bond lengths. 
It can be seen qualitatively that neither of these assump- 
tions is true. A closer approach of B to O will change 
the shape of the electron cloud of O, thus creating dif- 
ferences in f l  and f2 for the long and the short B-O 
bonds. Moreover, such a change in electron distribu- 
tion could conceivably affect the repulsive forces in the 
O-O edges, and therefore change the effective applied 
tension in O-B-O. Quantitatively, both these effects 
would need to be considered. Qualitatively, it is clear 
that both must act to enhance the stability of the off- 
centring once it has set in. In particular, the change 
of polarization of O resulting from the displacement 
of B controls the relationship between the sense of the 
displacements in successive octahedra; but for effects 
concerning a single octahedron, the treatment in terms 
of stresses will be qualitatively correct. 

The use of the word 'rattling' by Orgel in connexion 
with this off-centre displacement is unfortunate. As 
originally used to describe the situation of a too-small 
central cation in a coordination polyhedron, the meta- 
phor clearly implied an indeterminacy of position 
which would correspond to a large apparent amplitude 
of vibration. What we have here is quite different: the 
cation is very exactly located, and held by rather strong 
forces. The Goldschmidt 'no-rattling' rule still holds, 
in the sense that a too-small cation cannot occupy a 
central or off-centre position at random, but instead 
finds a specific but unsymmetrical solution in which 
what happens inside the octahedron is communicated 
through changes of polarization of the oxygens to 
adjacent octahedra and other cations. 

Orgel has considered displacements ranging from 
those of Ti 4+, which are intrinsically small (and perhaps 
only made possible by stresses acting on the octahedron 
from outside), to those of Vs+, which are character- 
istically so large that the octahedral environment is 
often hard to recognize. In this paper we shall consider 
only the moderately small displacements found for 
Nb 5+, where the effects of polarization are not so large 
as to make it unreasonable to treat the problem in 
terms of first-order deviations from an ideal structure 
with regular octahedra. (In writing Nb 5+ we refer mere- 
ly to the conventional valency, and do not imply that 
the atom is actually fully ionized). 

We now accept that, qualitatively, a tension above 
a certain critical value in the O - N b - O  tie brings about 
an off-centre displacement of Nb, and thereby a relief 
of tension compared with what it would have been if 
the central position were kept. But the relief is not 
confined to O - N b - O ;  it is shared with the O-O edges 
joining opposite ends of the relaxed O - N b - O  diameter 
in such a way that the stress energy as a whole is mini- 
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mized. These edges will therefore be lengthened com- 
pared with the unrelaxed edges. 

The existence of such a relaxation extension - a dif- 
ference between the average lengths of relaxed and un- 
relaxed edges- is a prediction of the theory. Its absolute 
magnitude cannot be predicted at present; what can 
be predicted is that its character and relative magnitude 
will be determined by the Nb displacement, and will 
(to a first approximation at least) be independent of 
the symmetry of the structure or the other cations 
present. 

So far, we have considered displacement of Nb along 
one diameter of its octahedron, Which leaves the ten- 
sions in the other two diameters practically unaltered. 
To relax the tensions in two diameters at once, the 
Nb displacement must approximately bisect the angle 
between them; to relax the tensions in all three at once, 
it must be approximately equally inclined to all three. 
Examples of all three types of displacement are known. 
We consider them in turn, to see what predictions can 
be made about the edge lengths for each type. 

(i) One corner-displacement. The Nb atom is dis- 
placed towards one comer of the octahedron, say C 
in Fig. 5, relaxing the O-Nb-O tie along CC'. Consider 
the three square sections of the octahedron, ABA'B', 
ACA'C', BCB'C'. Only in the two with CC' as diag- 
onal will the edges be relaxed; in the first-named, 
ABA'B', they remain unrelaxed. 

(ii) Two-corner displacement. The Nb atom is dis- 
placed in the plane of one of the squares, say ABA'B', 
approximately towards the mid point of an edge AB. 
The ties AA', BB', are relaxed. The square ABA'B' in 
which both diagonals are relaxed will have a double 
relaxation effect in its edges, the others only a single 
effect. The four edges AB, BA', A'B', B'A, are therefore 
relaxed to the other eight edges. We may refer to them 
respectively as 'fully relaxed' and 'relatively unrelaxed' 
(abbreviated, where it cannot create confusion, to 're- 
laxed' and 'unrelaxed'). 

(iii) Three-corner displacement. The Nb atom is dis- 
placed in a general direction, typically, but not neces- 
sarily exactly, perpendicular to an octahedron face, say 
ABC. The three bonds Nb-OA, Nb-OB, Nb-Oc, are 
shortened, and all three diametral ties are relaxed. 
Hence all edges are equally (and triply) relaxed. 

It can be seen that the sequence three-corner, two- 
corner, one-corner, displacement corresponds to a de- 
creasing sequence of O-Nb-O tensions. 

If the only forces operative were those of the octa- 
hedron itself (the intrinsic effect) we should expect the 
Nb displacements, and therefore the relaxation exten- 
sions, to be independent of the structure in which the 
octahedron is incorporated (though perhaps dependent 
on the temperature); they should be constant for all 
structures at a given temperature. We know that other 
forces must generally exist; we assume that they (like 
the polarization) can enhance the magnitude of the 
effect without altering its character; but we cannot 
allow for them quantitatively. We can however say 

that, wherever the Nb displacement fails in the se- 
quence outlined above, its relation to the relaxation 
extension will be of the same kind, and as a first- 
order approximation we may predict proportionality 
between them. Since we do not yet know how to allow 
for differences in absolute O-O edge lengths between 
different compounds, we must at this stage draw our 
experimental evidence from examples showing one- 
corner or two-corner displacement, where comparisons 
can be made of relaxed and unrelaxed edges within the 
same octahedron. 

Examples are found in KNbO3 and NaNbO3, both 
of which have structures belonging to the perovskite 
family. In orthorhombic KNbO3 (Katz & Megaw, 
1967), the (010) symmetry plane of the structure is also 
a symmetry plane of the octahedron, and the plane 
of the two-corner Nb displacement; the four bonds in 
this plane, which we expect to be relaxed, have a mean 
length of 2.854 A, while the eight bonds inclined to it 
have a mean length of 2.832 A. The Nb displacement 
from the centre of its square is 0.20 A. In tetragonal 
KNbO3 the Nb displacement is parallel to the tetrad 
axis; its magnitude has not been measured experimen- 
tally, but the octahedron edges can be calculated direct- 
ly from the lattice parameters measured by Shirane, 
Newnham & Pepinsky (1954). The eight relaxed edges, 
those with a component parallel to [001], have a length 
of 2.849 A; the four unrelaxed edges, those in the (001) 
plane, have a length of 2.826 A. Turning to NaNbO3, 
where the octahedron is the asymmetric unit of the 
structure, we find, as predicted, that the difference of 
symmetry makes no obvious difference to the relaxa- 
tion effect. The Nb displacement is two-corner (though 
directed rather more towards one than the other) and 
its magnitude is 0.16 A. The four edges in its plane 
are more nearly equal than in KNbO3 (with a difference 
of 0.018 A between extreme values) and have a mean 
length of 2.814 A, as compared with the eight other 
edges which (with a fairly large scatter) have a mean 
length of 2.796 A. (Data concerning this structure are 
from unpublished work by Lukaszewicz, Sakowski & 
Megaw, superseding the preliminary note by Wells & 
Megaw, 1961). The difference between the relaxation 
extensions in orthorhombic KNbO3 and NaNbO3, 

B' B 

C 
# 

Fig.5. Regular octahedron, to illustrate account in text of 
relaxation extension of edges. 
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which are 0.022 and 0.018 A respectively, is of the same 
sign as the difference in Nb displacements, and is in 
agreement with the proposed linear relation between 
relaxation extension and Nb displacement. 

Further work is in progress using these ideas. Points 
of particular interest are the application of the theory 
to thermal expansion, about which qualitatively correct 
predictions can be made, and the possibility, by con- 
sidering forces acting on the octahedron from the other 
cations, of explaining differences of length within the 
group of relaxed edges without altering predictions 
about their mean length. Applications to other struc- 
tures than those quoted here must also be considered, 

though there are not many that are known in very full 
detail. The effect is not confined to octahedra; off- 
centring of the same kind can be observed also in te- 
trahedra. These developments will be taken up in a 
later paper. 
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The B-O Bond Lengths in Boron-Oxygen Compounds 
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A simple molecular-orbital treatment of the z-electrons in a large variety of planar boron-oxygen 
compounds shows that variations in bond length are reasonably well explained in terms of a n-bond 
order. The m-technique method is of no advantage here as compared with the simple Htickel method. 

In most boron-oxygen compounds, the boron atom is 
bonded to three or four oxygen atoms. In the latter 
case, the four B-O bonds are arranged tetrahedrally 
around the boron atom. When only three bonds are 
formed, the boron atom is surrounded symmetrically 
by three oxygen atoms, all four atoms lying approxi- 
mately in the same plane. The bond length of the trig- 
onal B-O bond varies over the range 1.28 to 1.43 3,. 

Since the boron-oxygen framework is planar, it is 
reasonable to assume that, as a first approximation, 
the wave function can be divided into a- and n-mo- 
lecular orbitals. Then, in analogy to carbon zc-electron 
systems, any differences in bond length might be attri- 
buted to differences in n-bond order. Therefore, it 
should be possible to apply a standard Hfickel type 
analysis to molecules containing trigonally bonded 
boron atoms. 

Applications of n-bond theory to B-O bonds are 
rare. Coulson (1964) has used simple n-bond theory to 
explain the differences in bond length between the 
interior and exterior B-O bonds in metaboric acid. 
Mateson (1960) has used it to correlate reaction rates 
of reactions involving substituted ethyleneboronic 
acids. Armstrong & Perkins (1967) have used the more 
sophisticated Pariser-Parr-Pople (PPP) method to in- 
vestigate some substituted phenylboronic acids. All 

* Present address: Department of Chemistry, University of 
Victoria, Victoria, B.C., Canada. 

these calculations predict a migration of charge from 
the oxygen to the boron atom leading to a n-bond 
order in the range 0.3 to 0.5. This agrees with the gen- 
eral shortening of the BO bond observed in going from 
a tetrahedral to a trigonal state. 

Zachariasen (1963) has used Pauling's valence neu- 
tralization concept to correlate the variations in B-O 
and H-O bond lengths in crystalline borate molecules. 
Basically, the theory tries to take into account the 
effect of nearby atoms on the lengths of bonds formed 
with a given atom. A parameter, the bond strength, 
v~j, is defined for each bond in such a way that Z" v~j = 

J 

valence of the ith atom. The bond length of a given 
type of bond is then correlated to its bond strength 
through an empirically determined bond-length-bond- 
strength curve. Using this method, Zachariasen is able 
to derive a bond-length-bond-strength curve which can 
predict bond lengths to within 0.04 A. 

The purpose of this paper is to report the application 
of simple n-electron theory to some boron-oxygen 
compounds in an attempt to correlate the observed 
differences in bond length with molecular structure. 
The n-bond orders of a number of boron-oxygen com- 
pounds were calculated by a standard Htickel-type 
analysis. Both the simple Hiickel theory and o-tech- 
niques were employed. The calculations were carried 
out on a K D F  9 computer at the University of Oxford, 
using a Self-Consistent Hiickel Molecular Orbital pro- 


